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SUMMARY

This paper compares several high-resolution schemes for the computation of detonation waves in solid
explosives. The essential dif®culty in comparison with the usual application domain of these schemes is due to
the complexity and variety of the equations of state which are used. The HLLC Riemann solver is used in the
context of an Eulerian MUSCL scheme and in conjunction with a shock-tracking scheme. The motivation and
justi®cation for the various choices in the building of these schemes are discussed. The accuracy of both
schemes, full Eulerian and shock-tracking variant, is clearly demonstrated. In addition, the validity of the results
is shown. For one-dimensional applications the shock-tracking scheme is very accurate and relatively simple. For
multidimensional applications it is recommended that the full Eulerian version be used. # 1998 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

During the last two decades, considerable progress has been made in the solution of the equations of

gas dynamics. This progress is due to various advances in the understanding of hyperbolic systems

such as the Euler equations. Riemann-problem-based methods such as second- or higher-order

Godunov schemes1 constitute very ef®cient tools for gas dynamics numerical simulations. The

fundamental ideas of these extensions are essentially due to van Leer2 and Roe.3 Currently these

methods are widely used in aerodynamics and offer many advantages for capturing discontinuities,

especially in unsteady regimes. Gradually, these methods were extended to physical models more

complicated than the Euler equations. For example, two-phase ¯ows4,5 as well as multispecies

reactive ¯ows6 have been solved with this method. Their accuracy and appeal have led some

researchers to apply them to more marginal hyperbolic (shallow water equations)7 and non-

hyperbolic (incompressible Navier±Stokes equations)7 systems. Remaining in the more classical ®eld

of gas dynamics, one can notice that these methods are generally employed for ideal gas ¯ows or

ideal gaseous mixtures. Indeed, these methods have had only a few applications where the algebraic

form of the equation of state differs clearly from that for an ideal gas. The main reason resides in the
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fact that the Riemann problem and the general construction of a second-order Godunov-type scheme

are made considerably complicated by using a complex equation of state. This is why these methods

are not used at present in the numerous detonation codes. Detonations in solid high explosives

produce heterogeneous or gaseous mixtures at pressures of several hundred thousand atmospheres,

inevitably governed by real gas equations of state. Classical detonation codes generally use schemes

based on Taylor expansions, e.g. the central schemes of Lax and Wendroff,8 Richtmeyer and Morton9

and MacCormack.10 Indeed, these schemes do not use the Riemann problem solution. For evident

reasons of accuracy it would be interesting to take advantage of the Riemann-based methods for the

calculation of detonation waves. This cannot be realized without a careful analysis, because it is

necessary, apart from the usual qualities required of a numerical method (accuracy, stability,

convergence), to ful®l also qualities of robustness, rapidity and ¯exibility with model modi®cations.

This last characteristic is of uppermost importance. Indeed, for the simulation of modern detonation

problems it is important to be able to add or subtract easily some `species equations' to or from the

model. This type of modi®cation of the system of equations has to be easily compatible with the

method used to solve the equations. It is also very important to be able to change easily the equations

of state, knowing that they can be expressed in various algebraic forms. For their adaptation in the

method these equations of state should not introduce an increase in computational time and

prohibitive algebraic calculations. Strictly speaking, the present work does not contain a new method.

Here, various possibilities for the construction of a high-resolution scheme satisfying the previously

mentioned criteria are examined. One proposes therefore a management with various ingredients,

taking care to motivate and justify the retained choice. The ®nal method proposed here is Eulerian

and is a second-order Godunov-type scheme. A shock-tracking variant of this scheme is proposed and

detailed. This extension is important for some applications in which shock wave numerical diffusion

is not admissible.

2. THE MODEL

The model presented here is very representative of problems solved in modern detonation codes. It

consists of the Euler equations coupled with a certain number of species equations to track the

kinetics of explosive decomposition. Modern detonation problems are rarely reduced to kinetic

decomposition models with an unique variable. The equation of state used in this study is a function

of three variables. It is nevertheless usual to see equations of state as a function of two variables only

(pressure depends on density and internal energy): P � P�r; e� or e � e�r;P�. These equations of

state are adapted only to a reduced number of detonation problems and exclude in all cases an

accurate resolution of the reaction zone within the detonation wave. We adopt a formulation

P � P�r; e; l� or e � e�r;P; l�, where l is the global advancement parameter of the decomposition

reactions. This choice for the equation of state complicates the numerical algorithm because it

restricts our choice for the real gas Riemann solver, since only a few such solvers apply to equations

of state containing more than two variables.

The ¯uid dynamics equations are expressed as the Euler equations

@r
@t
� @ru

@x
� 0; �1�

@ru

@t
� @�ru2 � P�

@x
� 0; �2�

@rE

@t
� @u�rE � P�

@x
� 0; �3�

102 R. SAUREL AND J. MASSONI

INT. J. NUMER. METH. FLUIDS, VOL. 26: 101±121 (1998) # 1998 John Wiley & Sons, Ltd.



where r designates density, u velocity, P pressure and E total energy. Total energy and internal

energy used in the equation of state are related by E � e� 1
2

u2. The decomposition model uses three

variables. The kinetic scheme follows the work of Johnson et al.11 (JTF). When a shock wave

propagates into the explosive, hot spots are created locally. Decomposition of the explosive starts

around these hot spots and is followed by bulk decomposition. Evolution of the global decomposition

parameter is given by

dl
dt
� m

df

dt
� �1ÿ m� dg

dt
; �4�

where f represents the decomposition fraction from hot spots and m is a parameter of the kinetics. The

kinetics of hot spot decomposition is written as

df

dt
� �1ÿ f �Z ab

y2
eÿa=y; �5�

where Z; a and b are parameters and y represents the hot spot temperature. Note that this law of

decomposition is of Arrhenius type, representative of a broad class of kinetic laws for energetic

materials. Evolution of the bulk decomposition is given by g and follows the equation

dg

dt
� 0 if f < f0 �6�

or

dg

dt
� �1ÿ g� f ÿ f0

1ÿ f0
�G0 � F�Pshock��

P

P0

� �r

if f > f0; �7�

where

F�Pshock� � A
Pshock

P0

� �nÿr

1� B
Pshock

P0

� �7ÿn
" #

: �8�

In these equations, Pshock represents the shock pressure and P0; r; n;A;B and f0 are parameters.

Note that this second kinetic law is a function of pressure to the power of a certain exponent and is

representative of the second main class of kinetic laws for energetic materials (Vieille-type laws).

This kinetics necessitates a closure law for the hot spot temperature. It is expressed by the empirical

formulation

y � y0 exp
Gk�P ÿ Pshock�

1ÿ m�y0=a� ln�Pshock=P0�
� �

; �9�

where y0;Gk and m are constant parameters. Equation (9) is a function of pressure immediately

behind the shock wave, inside a control volume (mesh). Time evolution of the shock pressure is given

by

dPshock

dt
� 0; �10�

valid after shock wave passage.

The operator d=dt present in equations (4)±(7) and (10) represents the convective derivative

d=dt � @=@t � u@=@x. The complete equation system necessitates for its closure an equation of state.

A detonation in a solid (or gaseous) explosive consists of a shock wave followed by rapid

decomposition of the solid reactant to form gaseous products (ZND model). Therefore it is necessary

to have a representative equation of state for the two-phase solid±gas ¯owing mixture. A possible
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formulation is that proposed by Baudin and Bergues.12 In this formulation the gaseous phase is

represented by the JWL equation of state13 widely used in detonation, while the solid is governed by

the Cochran and Chan14 (CC) equation of state. These equations of state are based on two

assumptions: constant values for the speci®c heat capacity at constant volume �Cv� and Gruneisen

coef®cient (G). These equations of state can be written in Mie±Gruneisen algebraic form. By

combination of these two equations of state and with the help of the pressure equilibrium assumption

between the two phases one obtains a Mie±Gruneisen-type mixture equation of state

e�P; r; l� � ek�r; l� �
P ÿ Pk�r; l�

rG�l� : �11�

The various functions appearing in this equation are given in the Appendix. Furthermore, since the

numerical strategy is based on the Riemann problem resolution, it is necessary to know the sound

speed:

c2 � P ÿ r2�@e=@r�P;l
r2�@e=@P�r;l:

�12�

Partial derivatives appearing in the equation of state are also given in the Appendix. Convexity of

the equation of state (11) has been demonstrated.12 This is an important property for the Riemann

problem solution. As the full set of equations has to be solved by a Eulerian method, it is preferable to

write it in conservative form, since discontinuities are expected to be present in the ¯ow. The

conservative formulation is indeed the best formulation for ¯ows containing discontinuities, since

jump relations are contained in the ¯ux expressions. The equations written in total derivative form

(4)±(7) and (10), are expressed in conservative variables by combination with the continuity equation

(1). The system to be solved is therefore

@r
@t
� @ru

@x
� 0; �13�

@ru
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� 0; �14�
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� 0; �15�

@rl
@t
� @rlu

@x
� m

@rf

@t
� @rfu

@x

� �
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@x

� �
; �16�

@rf

@t
� @rfu

@x
� r�1ÿ f �Z ab

y2
eÿa=y; �17�

@rg

@t
� @rgu

@x
�

0 if f < f0;

�1ÿ g� f ÿ f0
1ÿ f0

�G0 � F�Pshock��
P

P0

� �r

if f > f0;

8><>: �18�

@rPshock

@t
� @ruPshock

@x
� 0: �19�

This system is accompanied by the closure laws (8), (9) and (11). The system of equations to be

solved is obviously hyperbolic. We are now going to suggest a strategy for its solution.

104 R. SAUREL AND J. MASSONI

INT. J. NUMER. METH. FLUIDS, VOL. 26: 101±121 (1998) # 1998 John Wiley & Sons, Ltd.



3. THE METHOD

As mentioned in Section 1, the method presented here is fully Eulerian and uses previous works that

have elaborated typical second-order Godunov schemes. Section 4 will be devoted to an extension of

this method to a shock-tracking variant. The van Leer concept2 is distinguished from that of

Godunov1 by the following fundamental idea: ¯ow variables are considered as piecewise linear

functions over the computational domain. In the Godunov method these functions are assumed to be

piecewise constants. Thus each conservative variable is characterized in each cell by an average value

and a slope. The conservative variable vector is denoted by

U � �r; ru; rE; rl; rf ; rg; rPshock�T:
The system composed of equations (13)±(15) constitutes the Euler equations, while system (16)±

(19) constitutes the species equations by analogy with the terminology used in reactive ¯ows. The

overall system to be solved is hyperbolic and conservative. It can be written in the form

@U

@t
� @F�U �

@x
� S�U �; �20�

where F�U � represents the ¯ux vector in (13)±(19) and S�U � the source terms.

3.1. Time splitting

With the present model one expects that source terms, representing chemical decomposition

reactions, will depend strongly on the hot spot temperature and shock pressure. It is therefore

preferable to solve source terms by an implicit technique or with the help of a good differential

solver. Thus, in order to avoid costly matrix operations and to use the best method for the hyperbolic

system, a time-splitting procedure is employed in which hydrodynamic and chemical processes

evolve independently during a time step. The time-splitting technique follows the ideas of Strang.15

Thus for equation (20) the solution will be obtained by a succession of operators as

Un�1 � LDt=2
s LDt

f LDt=2
s Un: �21�

The operator L
Dt=2
s represents the numerical solution of the ordinary differential system where only

source terms are present, i.e.

@U

@t
� S�U �: �22�

This stage is realized with the help of the DVODE solver,16 which possesses the feature of being able

to adapt automatically the time step and the integration method according to the problem stiffness.

No additional calculation is needed (Jacobian matrix, for example) for its use.

The operator LDt
f represents the numerical solution of the hyperbolic system

@U

@t
� @F�U �

@x
� 0; �23�

which constitutes a more dif®cult stage for its resolution than problem (22). Essentially, two

strategies are possible. The ®rst consists of adapting Roe's method3 to solve the equations. The

second alternative resides in the original methodology of van Leer with the MUSCL method. For

Roe's method it is necessary to calculate eigenvalues and eigenvectors of Roe's matrix. Such

operations are particularly tedious for suf®ciently high-dimensional systems (more than three) and

compromise rapid modi®cations of the equation model to be solved. These operations become more

complex as the equation of state increases in complexity. Moreover, the development of a linearized
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Riemann solver by Roe's strategy for real gases, following Glaister,17 is not easy for the equation of

state involving three parameters that we must consider. In summary, we conclude that Roe's method

is too costly to implement for classical detonation applications, although its accuracy and qualities are

not debatable. For example, one can refer to the excellent paper of Clarke et al.18 to see the

capabilities of this method on a detonation problem involving, albeit, a rather simpli®ed model. One

returns therefore to the MUSCL strategy that does not require as many operations and that, with the

proposed adjustment, will lead to an accuracy comparable with that of Roe's method. This method

consists of a succession of several steps:

(a) prediction of conservative variables at instant n� 1
2

on each cell interface

(b) resolution of the Riemann problem by an exact or approximate solver

(c) application of the conservative law on each control volume

(d) limitation of slope variables on each cell.

3.2. Predictor

Stage (a) may be undertaken essentially by following two strategies which have proven their

ef®ciency: the PLM (piecewise linear method) due to Colella and Glaz19 (see also Reference 4) and

the MUSCL±Hancock procedure described by Quirk.20 The PLM requires calculation of the system

Jacobian matrix (23). The operation is possible but is rendered tedious by the complex equation of

state that we have to manipulate. We recommend the MUSCL±Hancock procedure because it leads to

the same accuracy as the PLM without recourse to the Jacobian matrix calculation. In this context the

predictor step is written as follows.

Consider ®rst a control volume i whose interfaces are identi®ed as i� 1
2

and iÿ 1
2

(Figure 1). In cell

i the vector U n
i and the slopes dUn

i of conservative variables are known at the current time n.

One ®rst expresses the conservative variables on the cell interfaces at time n, viewed from the cell

interior:

Un
i�1=2;L � U n

i � 1
2
dUn

i ; U n
iÿ1=2;R � U n

i ÿ 1
2
dU n

i : �24�
Then the evolution of these variables at time n� 1

2
is determined using the ¯uxes calculated with the

help of the previous variables and the discretization of equation (23):

U
n�1=2
i�1=2;L � U n

i�1=2;L ÿ
Dt

2Dx
�F�U n

i�1=2;L� ÿ F�U n
iÿ1=2;R��;

U
n�1=2
iÿ1=2;R � U n

iÿ1=2;R ÿ
Dt

2Dx
�F�U n

i�1=2;L� ÿ F�U n
iÿ1=2;R��:

�25�

Note that it is not necessary to apply this procedure to the entire set of equations (13)±(19). Indeed,

in order for the method to be second-order-accurate, it is necessary that the conservative variables be

piecewise linear functions. Concerning equations (16)±(19), the variable r being a piecewise linear

Figure 1. Representation of conservative variable evolution in ®xed one-dimensional control volume
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function, it suf®ces that the primitive variables �l; f ; g and Pshock) be piecewise constant functions. In

this situation the predictor step for equations (16)±(19) reduces to

U
n�1=2
i�1=2;LR �

rn�1=2
i�1=2;LR

rn
i

U n
i : �26�

3.3. Riemann problem

Stage (b) is devoted to the Riemann problem solution and constitutes the most dif®cult part of the

present algorithm. As we have already mentioned, Glaister's method is too intricate to implement for

present applications, in which the equation of state is a function of more than two variables. It is again

necessary to choose between three alternatives: the quasi-exact solver of Saurel et al.,21 the

approximate solver of Harten et al.22 (HLL) and the ¯ux-splitting technique of van Leer extended to

real gases by Liou et al.23 Riemann solvers based on ¯ux splitting have shown some weaknesses in

the resolution of several problems in gas dynamics with the ideal gas equation of state. One therefore

excludes this possibility. The Riemann solver of Saurel et al.21 is very accurate but is also the most

complicated of the three. It requires in the case of a two-variable equation of state a signi®cant

number of thermodynamic function calculations. Although this is possible, it is dif®cult to generalize

the technique to an equation of state that is a function of three variables. Therefore it is not adopted

for the present problem. Thus only the HLL approximate solver22 remains. It requires as input all

right- and left-state ¯uid variables and also wave speed estimates for the right- and left-facing waves.

Knowledge of these wave speeds is not a priori evident. Usually, these wave speeds are outputs of

Riemann solver. The HLL solver therefore requires part of the solution. These wave speed estimates

may be determined with satisfactory accuracy by the Davis approximation.24 Another disadvantage

of this solver is that it provides only an average state for density and internal energy between the

right- and left-facing waves (Figure 2). The presence of the contact surface between the right- and

left-facing waves implied a density and internal energy discontinuity across right- and left-facing

waves. It would therefore be prejudicial to have a unique average state between the two waves. This

disadvantage has been remedied by Toro et al.,25 whereby the contact surface is restored in the HLL

solver. With this correction it is called the HLLC solver. We recall brie¯y the basic ideas of this

clever Riemann solver. Equation (23) is written in integral form (27), in order to admit discontinuous

solutions, as �
O
�U dxÿ F�U � dt� � 0: �27�

Figure 2. Representation of Riemann problem between states UL and UR according to HLLC approximation
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For a control volume of dimensions �x1; x2� � �t1; t2�, equation (27) becomes�x2

x1

U �x; t2� dxÿ
�x2

x1

U �x; t1� dx�
�t2

t1

F�U �x2; t�� dt ÿ
�t2

t1

F�U �x1; t�� dt � 0: �28�

Following Toro,7 integration (28) is performed over the control volumes schematized in Figure 2.

UL* and UR* represent the states covered by the left- and right-facing waves respectively and are

therefore solutions of the Riemann problem. Note that these states are constant in the approximation

of this solver between two waves. Right, left and intermediate wave speeds are denoted by Sr; Sl and

Sm respectively.

3.3.1. Wave speed estimates. The literature provides two possible estimates for the right- and left-

facing wave speeds. Davis24 has proposed as estimate for the right-facing wave speed the maximum

speed of characteristic waves, i.e. SR � max�ul � cl; ur � cr�. By the same reasoning the left-facing

wave speed is obtained as SL � min�ul ÿ cl; ur ÿ cr�. Note that this estimate uses only known

variables from right and left states. Another possible choice is that proposed by Einfeld et al.26 This

estimate uses Roe-averaged variables. As already mentioned, we consider the calculation of these

variables too complex and costly for the non-ideal equations of state employed here. We therefore

retain the wave speed estimates of Davis.24 This choice may be improved using relation (31)

following recommendations by Toro et al.25 It remains now to determine the contact surface velocity

Sm. Evaluation of the integral (28) over the control volume ABCD yields

UL* � UL �
FL*ÿ FL

SL

: �29�

Similarly, integration over the control volume BFGC gives

UL* � UR �
FL*ÿ FR

SR

: �30�

Combination of relationships (29) and (30) yields the result

UL* �
SRUR ÿ SLUL ÿ �FR ÿ FL�

SR ÿ SL

: �31�

One can notice that this result is indifferent to whether the contact surface faces right or left. Equation

(31) represents the Riemann problem solution in the original framework of the HLL solver. Here

equation (31) allows the calculation of the speed Sm by taking the ratio of the ®rst two conservative

variables. Also, the SR and SL estimates may be improved with the help of the UL* state. See

Reference 25 for recommendations.

3.3.2. Complete solution. Equation (29) can be written in the form

SLUL*ÿ FL* � SLUL ÿ FL: �32�
Note that the right-hand side of this equation is known. The mass ¯ux for the ¯uid crossed by the left-

facing wave is written as FL* � rL*uL*. This equation makes intervene the ¯uid velocity between the

right- and left-facing waves, determined previously. Indeed, uL* � uR* � Sm. One then determines

rL* � rL

SL ÿ uL

SL ÿ Sm

: �33�
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By the same reasoning the other variables to the left of the contact surface are obtained. The variables

to the right of the contact surface are obtained by performing the integral (28) over the control

volume EFGH to give

FR* � FR � SR�UR*ÿ UR�; �34�
yielding the density expression

rR* � rR

SR ÿ uR

SR ÿ Sm

: �35�

Remark. As for the predictor step, it is not necessary to perform all these calculations for the

complete system (23). Resolution of the Riemann problem is indispensable for the Euler equations

(13)±(15) but is not necessary for the species equations (16)±(19). Writing these equations in

primitive variables shows that the variables l; f ; g and Pshock are constant along the characteristic

direction dx=dt � u. It follows that these variables undergo no variation across the right- and left-

facing waves. Determination of the contact surface velocity is therefore suf®cient to know the

upwinding sense for the various ¯ux calculations.

3.4. Conservation step

This step proceeds without dif®culty. The solution is obtained by integrating equation (23) over the

control volume:

Un�1
i � Un

i ÿ
Dt

Dx
�F�WR� ÿ F�WL��: �36�

States WR and WL represent the Riemann problem solution detailed previously from states calculated

during the predictor step:

WR � WR U
n�1=2
i�1=2;L;U

n�1=2
i�1=2;R

� �
; WL � WL U

n�1=2
iÿ1=2;L;U

n�1=2
iÿ1=2;R

� �
: �37�

Sampling of the Riemann problem solution state depends on the relative intercell line position

�x=t � 0� and on the various right, left and intermediate wave speeds.

3.5. Limitation process

There exist various procedures for slope limitation in order to obtain monotonicity. Three ¯ux

limiters have been tested: the Minmod,2 Van Albada et al.27 and Superbee28 limiters. The Superbee

limiter28 is reputed for its excellent resolution of discontinuities. However, it produces prejudicial

oscillations. The Minmod limiter2 is more diffusive for discontinuities but produces no parasitic

oscillations. The Van Albada et al. limiter27 lies between the two previous limiters for the capture of

discontinuities and does not create parasitic oscillations. Denoting dU�i �
Ui�1 ÿ Ui; dUÿi � Ui ÿ Uiÿ1, S � d� � dÿ and p � d�dÿ,

if S > e; then dUi �
p� jpj

S
; else dUi � 0 �e � 10ÿ12 in our calculations�: �38�

The slope calculations proposed here make use of conservative variables. Other choices are

possible, namely characteristic or primitive variables. Slope calculations in the primitive variable

formulation yield a degradation of the solution in comparison with the conservative formulation. The

characteristic variable formulation has been tested by the authors on an ideal gas test case. It
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improves the solution in comparison with conservative slopes but does not guarantee robustness of

the scheme when subjected to the drastic conditions that we are treating.

3.6. Numerical tests

Figures 3±6 present a comparison between the various schemes mentioned in Section 1 and the

new algorithm given here. The test case is the classical shock tube problem. For this test case the

ideal gas equation of state has been employed in order to compare computed results with the available

exact solution. Only density pro®les are represented. Conditions of the test problem are: left stateÐ

P� 0�1 GPa, r� 10 kg m73, u� 0 m s71; right stateÐP� 0�1 MPa, r� 1 kg m73, u� 0 m s71. The

tube is ®lled in its right and left chambers by the same gas of speci®c heat ratio g � 1�4. Initially, the

separation between the left and right chambers is located at the middle of the shock tube. Results are

reported at time 80 ms. A constant time step of 1 ms has been used in all calculations. The exact

solution is always shown as a full curve, while the numerical solution is shown as a series of points.

In all cases the mesh contains 100 cells.

Figure 3 shows results obtained for this test case with the MacCormack10 scheme. A second-order

arti®cial viscosity correction is used following MacCormack. The arti®cial viscosity coef®cient has

been chosen equal to 0�03 and corresponds to the best compromise for wave capturing in this test

case. This scheme is very representative of the class of methods currently used in detonation codes.

One can notice that the shock wave capture is within four grid points and that the contact

discontinuity is within 10 grid points approximately. Oscillations are present for each discontinuity.

The rarefaction wave, on the other hand, is computed correctly.

Figure 4 shows the results obtained with the Godunov1 scheme. The performance of this scheme in

terms of discontinuity handling is comparable with that of the MacCormack scheme. However, the

density plateau is not reached and the rarefaction wave is less resolved. Nevertheless, no oscillation is

present.

In Figure 5 the second-order Godunov scheme described previously has been used. The Riemann

solver is HLLC and the ¯ux limiter is Superbee. The shock wave and the contact discontinuity are

now captured within two and six grid points respectively. The rarefaction wave is solved perfectly.

On the other hand, the tail of the rarefaction wave (abscissa 0�6 m) produces a strong oscillation. Note

that the density plateau is nearly reached.

Figure 3. Density pro®le for shock tube case test with MacCormack scheme
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Results of Figure 6 are similar to those of Figure 5. The oscillation at the tail of the rarefaction

wave has nearly disappeared, but the contact discontinuity is more diffused. The preceding test case

puts in evidence the superiority of second-order Godunov-type schemes, even if they are perfectible.

The Van Albada et al. limiter seems to be a good compromise.

Before applying the proposed scheme to a detonation problem, it is necessary to clarify an aspect

not emphasized yet. The chemical decomposition model of the explosive which is employed here is

that of Johnson et al.11 as described in Section 2. It uses the shock pressure as parameter. However, it

is well known that Eulerian methods do not allow the determination of the shock pressure, since

shock waves are always diffused over several meshes. Two ways are nevertheless possible to

determine the shock pressure: (i) the use of a sensor which detects the shock wave passage; (ii) the

development of a shock-tracking algorithm which eliminates shock wave diffusion.

Figure 4. Density pro®le for shock tube test case with Godunov scheme

Figure 5. Density pro®le for shock tube test case with present scheme and Superbee limiter
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The second alternative is more complicated to implement than the ®rst. Nevertheless, we are going

to develop this approach in the sequel. For the moment we use as shock wave sensor the following

criterion:

if D � ui�1 ÿ uiÿ1 < 0; then Sshock �
r
P
D2; otherwise Sshock � 0: �39�

The shock wave is considered to have crossed a cell if the following criteria are satis®ed:

Pi > Pshock and Sshock;i < 0�01 (for example). Pshock is a threshold pressure, taken as equal to half the

impact pressure for the present application. The test case studied is that of a shock-to-detonation

transition of a high explosive, PBX 9404, whose data are listed in Table I.

An impactor, made of the same material as the explosive, hits a 2 cm long column of the explosive.

The impactor has a velocity of 530 m s71 and induces a 3�5 GPa shock wave in the explosive. The

induced shock wave provokes the initiation of a combustion that gradually grows to a detonation.

During the whole calculation the inlet boundary condition is treated as a moving piston with a

velocity of 530 m s71.

The pressure evolution in the column at equally spaced time instants (0�3 ms) has been plotted

during the shock-to-detonation transition process. In the ®rst curve (Figure 7) the shock wave has just

penetrated the explosive and the reaction is not signi®cant enough to cause any variation in the

pressure. In the second curve the reaction has begun. The pressure is slightly higher and the shock

wave a little more intense. This effect is emphasized in the next three curves. In the ®fth curve it

appears clearly that the combustion has hold of the shock wave. In the next curve, catching up has

occurred and the pressure curve becomes very stiff. Detonation has been achieved. The subsequent

curves show the stabilization of this detonation.

Figure 8 shows the pressure signal recorded by equally spaced ¯uid volumes, initially of 1 mm,

over a distance of 10 mm. These volumes are free to displace in a Lagrangian manner. The previously

mentioned phenomena are better visible. The detonation appears at a Lagrangian abscissa of 7 mm.

Figure 9 shows the evolution of the shock wave sensor at the same instants as in Figure 7. This

sensor allows the calculation of the shock pressure as presented in Figure 10.

To check the validity of the shock pressure determination process, we are now going to develop a

shock-tracking variant of the proposed method.

Figure 6. Density pro®le for shock test tube test case with present scheme and Van Albada et al. limiter
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4. THE SHOCK-TRACKING VARIANT

The shock-tracking method requires more thought to implement than the previous Eulerian scheme.

In the one-dimensional case the modi®cations are not very complex and the implementation is quite

accessible. The two-dimensional extension is more dif®cult because it is necessary to track a 2D

curve. The necessary elements for the implementation of a two-dimensional front-tracking method

Table I. Physical data for PBX 9404 (MKS units)

CC EOS Parameter JWL EOS Parameter

A1 1�28761010 A 8�54561011

A2 1�34261010 B 2�05061010

E1 4�1 R1 4�6
E2 3�1 R2 1�35
Cvs 1087 Cvg 815
Gs0 0�93 Gg0 0�25

JTF kinetics Parameter General Parameter

P0 3�56109 IDa 1840
m 0�05 DCJ 8800
y0 725 PCJ 376109

m 3 TCJ 4040
Gk 4610712

Z 561019

a 26520
b 2500
f0 0�14
G0 1�0156106

A 116987
B 0
n 2�811
r 1

a Initial density.

Figure 7. Pressure evolution in column of explosive
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can be found in References 29 and 30. The latter paper details how to follow a two-dimensional

interface. The basic ideas can be extended to shock tracking.

We consider here only one-dimensional shock tracking. The necessity of this type of algorithm has

been especially emphasized by Bukiet,31 who has developed an extension of the random choice

method of Glimm32 to solid explosive detonations. The solution of the Riemann problem in reactive

¯ow has been detailed, but the equation of state used is very simpli®ed, since the ideal gas law is

used. Here the model described in Section 2 is used, with the equations of state and complex kinetics

mentioned previously.

The shock position is known initially and its current position is determined by solution of the

equation

dXs

dt
� os: �40�

Figure 8. Pressure evolution on Lagrangian scale

Figure 9. Evolution of shock wave sensor
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The current position of the shock wave allows the determination of the cell index where the shock is

situated �Is�. Two con®gurations are then possible according to whether the shock remains in the cell

Is between two successive instants or leaves it.

(a) The shock remains in the cell. This situation is represented in Figure 11, where the broken lines

represent interfaces between two cells. Up to point Is ÿ 1 these interfaces are motionless and so the

Eulerian method described previously can be used. For cell Is the interface Is ÿ 1
2

is motionless, but

the interface on the right, represented by the shock, displaces with velocity os. Thus the control

volume varies with time. The conservation law then becomes

Un�1
i � 1

Dxn�1
DxnUn

i �
Dt

Dxn
�F�WR� ÿ F�WL��

� �
;

Dxn � X n
s ÿ xIsÿ1=2; Dxn�1 � X n�1

s ÿ xIsÿ1=2

�41�

and WR and WL represents the Riemann problem solution calculated from the states

WL � WL�U n
Isÿ1;Un

Is
�; WR � WR�U n

Is�1;Un
Is�1�: �42�

In order to solve the Riemann problem between states Un
Is

and Un
Is�1, the right wave speed SR � os

(shock wave speed) is necessary for the HLLC solver. os is determined by resolution of the Rankine±

Figure 11. Shock remaining inside cell

Figure 10. Evolution of shock pressure
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Hugoniot conditions between states U n
Is

and U n
Is�1

. Finally, it is necessary to take the shock motion into

account for the ¯ux calculation at the moving boundary corresponding to the shock wave:

F�WR� �
r�uÿ os�
r�uÿ os�u� P

r�uÿ os�E � Pu

8<:
(b) The shock leaves the cell. This situation is represented in Figure 12. In this case, cells 1 to Is ÿ 1

and cells Is � 2 to Iend (if necessary) are processed by the Eulerian algorithm. The cell Is is processed

by the preceding procedure. The cell Is � 1 is allocated directly by the state solution of the Riemann

problem:

if X n�1
s > xIs�1 and X n�1

contact < xIs�1; then UIn�1
s
� UR*;

if X n�1
s > xIs�1 and X n�1

contact > xIs�1; then UIn�1
s
� UL*;

We use the same shock-to-detonation transition test case as previously. Results shown in Figure 13

are to be compared with those in Figure 7. One can notice that the problem of shock-to-detonation

transition is solved as well by the Eulerian method as by the shock-tracking method. Shock fronts are

Figure 12. Shock changing cell

Figure 13. Pressure evolution in column of explosive
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more sharply resolved. Differences between the two methods are not readily visible, because a ®ne

mesh has been used involving 1000 uniformly distributed cells.

The bene®t of shock wave capturing is more clearly seen in Figure 14 by comparison with Figure

8. The detonation is identically observed at the Lagrangian abscissa of 7 mm, but the pressure rise at

the Neumann spike reaches a slightly inferior level compared with the full Eulerian calculation. In

Figure 15 the shock pressure evolution is presented and can be compared with the evolution of Figure

10. The new results are very close, which allows one to validate the calculation of the shock pressure

in the context of the Eulerian method. One can also notice that the shock-tracking method eliminates

all parasitic oscillations in the simulation. In order to validate results produced by the two codes.

Eulerian and shock tracking, another code has been realized to solve the ¯ow in the detonation

reaction zone. This type of calculation can be achieved by following the basic ideas of the ZND

model resolution as presented by Fickett and Davis.33 Recall only that this model is valid in the

context of a steady plane detonation. By writing the one-dimensional hydrodynamics equations in the

steady regime and in the shock wave frame of reference, one can calculate the shock ¯ow variables

Figure 14. Pressure evolution on Lagrangian scale

Figure 15. Evolution of shock pressure
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up to the sonic point (CJ point). This calculation involves the solution of a simple ordinary

differential system that is easy to solve and does not involve wave dynamics. These results can

therefore serve as validation for the shock-tracking code.

In Figure 16 the evolution of the pressure is presented, starting from the shock front back to ¯ow.

The full curve relates to the shock-tracking calculation. The bold curve, appearing only in the

reaction zone, relates to the ZND model resolution. The agreement between the two simulations is

good, thus validating the tracking code and the Eulerian approach.

5. CONCLUSIONS

Two ef®cient approaches for the solution of detonation dynamics in a high explosive have been

presented. A full Eulerian approach based on a TVD scheme, adapted to real gases with a complex

equation of state, has been developed. An extention of this method to shock tracking has been

proposed. These two methods are based on the Riemann problem, which has been solved

approximately using the Toro et al.25 Riemann solver. The two methods are ef®cient, robust and

accurate. The Eulerian tracking method has the advantage of being easily extensible to

multidimensional problems. The shock-tracking method is generalizable in 2D but dif®cult to

conceive in 3D. We therefore propose to use this type of approach for one-dimensional problems

essentially. This approach can replace the usual resolution methodology of the ZND problem. It

allows the calculation of the ¯ow variables in the reaction zone and outside. It can be used for

detonation wave acceleration that cannot be calculated by the usual ZND methods. The shock-

tracking version is faster than the Eulerian method, since the calculation is restricted to the cells from

the inlet of the tube up to the shock. As it is more accurate than the Eulerian version, since it does not

suffer from numerical diffusion at the shock wave, it may be used for the determination of the optimal

mesh size for the Eulerian code. Indeed, on the test case presented, results between the two versions

are identical using 200 cells. Results are again very close using 100 cells. One can therefore use the

tracking version as reference to determine in one dimension the optimal mesh for the Eulerian

version. For multidimensional problems the Eulerian version is recommended because of its

compromise between accuracy and simplicity.

Figure 16. Pressure evolution for stable detonation, calculated with ZND model (bold curve) and shock-tracking method (full
curve)
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APPENDIX: EQUATIONS OF STATE

The Cochran±Chan14 equation of state (EOS) is a complete equation of state that is normally used to

describe solid material behaviour under shock waves. This EOS can be written in Mie±Gruneisen

form as

P�r; e� � rGs0�eÿ eks�r�� � Pks�r�;
where

eks�r� � ÿ
A1

r0�1ÿ E1�
r0

r

� �1ÿE1

ÿ1

" #
� A2

r0�1ÿ E2�
r0

r

� �1ÿE2

ÿ1

" #
ÿ CvsT0 � e0;

e�r; T � � eks�r� � CvsT ;

The squared sound speed is given by

c2 � 1

r
�Gs0 � 1��P ÿ Pks� �

dPks

dr
:

The Jones±Wilkins±Lee (JWL) EOS is normally used for gaseous detonation products and can be

written in Mie±Gruneisen form, following Baudin and Bergues,12 as

P�r; e� � rGg0�eÿ ekg�r�� � Pkg�r�;
where

ekg�r� �
A

r0R1

eÿR1�r0=r� � B

r0R2

eÿR2�r0=r� � cek
T0|����������������������������������{z����������������������������������}

ek1

� k

r0Gg0

r0

r

� �ÿG0

|�����������{z�����������}
ek2

;

E�r; T � � ekg�r� � CvgT ;

Pkg�v� � ÿ
dekg

d�1=r� � AeÿR1�r0=r� � BeR2�r0=r�|������������������{z������������������}
PK1

� k
r0

r

� �ÿ�Gg0�1�

|����������{z����������}
Pk2

;

P�r; T � � Pkg�r� � rGg0CvgT :

The constants are given by

k � �PCJ ÿ Pk1�rCJ� ÿ rCJG0CvTCJ�
r0

rCJ

� �Gg0�1

;

cek
� ÿ A

r0R1

eÿR1�r0=rCJ� ÿ B

r0R2

eÿR2�r0=rCJ� ÿ �PCJ ÿ PR1
�PCJ��

1

rCJGg0

� eCJ;

1

rCJ

� 1

r0

ÿ PCJ

1

r0DCJ

� �2

; eCJ �
1

2
PCJ

1

r0

ÿ 1

rCJ

� �
� e0:
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The squared sound speed is given by

c2 ÿ 1

r
�Gg0 � 1��P ÿ Pkg� �

dPkg

dr
:

The CJ parameters can be determined by a CJ thermochemical code (QUERCY,34 for example). The

JWL equation of state corresponds to a reduction of a more complete EOS such as H9.35 Its

coef®cients are determined in order to obtain the same CJ point as given by the H9 EOS and the same

main isentrope.

A mixture EOS can be constructed as described by Baudin and Bergues,12 depending on �r; e; l�
mixture variables:

P�r; e; l� � rG�l��eÿ ek�r; l�� � Pk�r; l�:
The mixture variables are de®ned by

Pk�r; l� � �1ÿ l�Pks�r� � lPkg�r�; ek�r; l� � �1ÿ l�eks�r� � lekg�r�;

Cv�l� ÿ �1ÿ l�Cvs � lCvg; G�l� � �1ÿ l�GsCvs � lGgCvg

Cv�l�
:

The mixture squared sound speed is given by

c2 � P ÿ r2�@e=@r�P;l
r2�@e=@P�r;l

where

@e

@r

� �
P;l
� @ek

@r

� �
l
ÿ �@Pk=@r�l

rG�l� �
P ÿ Pk

@2G�l�
� �

:

with m � r0=r and dm=dr � ÿr0=r
2 one can write

@ek

@r

� �
l
� �1ÿ l� deks

dm
� l

dekg

dm

�
dm
dr
;

@Pk

@r

� �
l
� �1ÿ l� dPks

dm
� l

dPkg

dm

� �
dm
dr
;

�
where

deks

dm
� ÿA1

r0

mÿE1 � A2

r0

mÿE2 ;
dekg

dm
� ÿ A

r0

eÿR1m ÿ B

r0

eÿR2m;

dPks

dm
� ÿA1E1m

ÿ�1�E1� � A2E2m
ÿ�1�E2�;

dPkg

dm
� ÿAR1eÿR1 m ÿ BR2eÿR2m;

@e

@P

� �
r;l
� 1

rG�l� :
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